Forex data is data that is collected from the Forex market. It provides insight on what is changing in the market, where money can be made, as well as at risk of being lost. The changing of currencies and stocks also determines the exchange rate between currencies.
In [84]:
Out[84]:
Date | Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|---|
0 | 2020-07-17 | 1.138650 | 1.144165 | 1.137889 | 1.139212 | 1.139212 | 0 |
1 | 2020-07-20 | 1.143955 | 1.146789 | 1.140524 | 1.144296 | 1.144296 | 0 |
2 | 2020-07-21 | 1.145764 | 1.149801 | 1.142622 | 1.145869 | 1.145869 | 0 |
3 | 2020-07-22 | 1.153509 | 1.160093 | 1.150854 | 1.153403 | 1.153403 | 0 |
4 | 2020-07-23 | 1.156671 | 1.162426 | 1.154215 | 1.156872 | 1.156872 | 0 |
... | ... | ... | ... | ... | ... | ... | ... |
256 | 2021-07-12 | 1.187366 | 1.188213 | 1.183670 | 1.187296 | 1.187296 | 0 |
257 | 2021-07-13 | 1.186493 | 1.187790 | 1.179343 | 1.186521 | 1.186521 | 0 |
258 | 2021-07-14 | 1.177440 | 1.182801 | 1.177260 | 1.177537 | 1.177537 | 0 |
259 | 2021-07-15 | 1.183334 | 1.185115 | 1.180596 | 1.183334 | 1.183334 | 0 |
260 | 2021-07-16 | 1.181307 | 1.182300 | 1.179400 | 1.181181 | 1.181181 | 0 |
I261 rows × 7 columns
n [85]:
Out[85]:
[<matplotlib.lines.Line2D at 0x7f886b129828>]
In [86]:
Out[86]:
[]
In [4]:
Open High Low Close Adj Close Volume Date 2020-07-17 1.138650 1.144165 1.137889 1.139212 1.139212 0 2020-07-20 1.143955 1.146789 1.140524 1.144296 1.144296 0 2020-07-21 1.145764 1.149801 1.142622 1.145869 1.145869 0 2020-07-22 1.153509 1.160093 1.150854 1.153403 1.153403 0 2020-07-23 1.156671 1.162426 1.154215 1.156872 1.156872 0
In [64]:
Out[64]:
Date | Open | High | Low | Close | Adj Close | Volume | |
0 | 2020-07-17 | 1.138650 | 1.144165 | 1.137889 | 1.139212 | 1.139212 | 0 |
1 | 2020-07-20 | 1.143955 | 1.146789 | 1.140524 | 1.144296 | 1.144296 | 0 |
2 | 2020-07-21 | 1.145764 | 1.149801 | 1.142622 | 1.145869 | 1.145869 | 0 |
3 | 2020-07-22 | 1.153509 | 1.160093 | 1.150854 | 1.153403 | 1.153403 | 0 |
4 | 2020-07-23 | 1.156671 | 1.162426 | 1.154215 | 1.156872 | 1.156872 | 0 |
5 | 2020-07-24 | 1.159501 | 1.164009 | 1.158171 | 1.159608 | 1.159608 | 0 |
6 | 2020-07-27 | 1.165257 | 1.177953 | 1.165257 | 1.165257 | 1.165257 | 0 |
7 | 2020-07-28 | 1.176651 | 1.177579 | 1.170100 | 1.176928 | 1.176928 | 0 |
8 | 2020-07-29 | 1.172058 | 1.177899 | 1.171495 | 1.171880 | 1.171880 | 0 |
9 | 2020-07-30 | 1.178689 | 1.180735 | 1.173268 | 1.178287 | 1.178287 | 0 |
Out[65]:
Open | High | Low | Close | Adj Close | Volume | |
0 | NaN | NaN | NaN | NaN | NaN | NaN |
1 | NaN | NaN | NaN | NaN | NaN | NaN |
2 | NaN | NaN | NaN | NaN | NaN | NaN |
3 | NaN | NaN | NaN | NaN | NaN | NaN |
4 | NaN | NaN | NaN | NaN | NaN | NaN |
5 | NaN | NaN | NaN | NaN | NaN | NaN |
6 | NaN | NaN | NaN | NaN | NaN | NaN |
7 | NaN | NaN | NaN | NaN | NaN | NaN |
8 | NaN | NaN | NaN | NaN | NaN | NaN |
9 | NaN | NaN | NaN | NaN | NaN | NaN |
10 | NaN | NaN | NaN | NaN | NaN | NaN |
11 | NaN | NaN | NaN | NaN | NaN | NaN |
12 | NaN | NaN | NaN | NaN | NaN | NaN |
13 | NaN | NaN | NaN | NaN | NaN | NaN |
14 | NaN | NaN | NaN | NaN | NaN | NaN |
15 | NaN | NaN | NaN | NaN | NaN | NaN |
16 | NaN | NaN | NaN | NaN | NaN | NaN |
17 | NaN | NaN | NaN | NaN | NaN | NaN |
18 | NaN | NaN | NaN | NaN | NaN | NaN |
19 | 1.169727 | 1.174497 | 1.166116 | 1.169748 | 1.169748 | 0.0 |
In [8]:
Out[8]:
Open | High | Low | Close | Adj Close | Volume | |
256 | 1.200753 | 1.203508 | 1.197616 | 1.200819 | 1.200819 | 0.0 |
257 | 1.200451 | 1.203207 | 1.197272 | 1.200517 | 1.200517 | 0.0 |
258 | 1.200073 | 1.202861 | 1.196934 | 1.200141 | 1.200141 | 0.0 |
259 | 1.199737 | 1.202470 | 1.196583 | 1.199803 | 1.199803 | 0.0 |
260 | 1.199390 | 1.202111 | 1.196285 | 1.199454 | 1.199454 | 0.0 |
In [66]:
Out[66]: <AxesSubplot:>
In [67]:
Out[67]:
<bound method NDFrame.tail of Date Open High Low 0 2020-07-17 1.138650 1.144165 1.137889 1.139212 1.139212 0 1 2020-07-20 1.143955 1.146789 1.140524 1.144296 1.144296 0 2 2020-07-21 1.145764 1.149801 1.142622 1.145869 1.145869 0 3 2020-07-22 1.153509 1.160093 1.150854 1.153403 1.153403 0 4 2020-07-23 1.156671 1.162426 1.154215 1.156872 1.156872 0 .. ... ... ... ... ... ... ... 256 2021-07-12 1.187366 1.188213 1.183670 1.187296 1.187296 0 257 2021-07-13 1.186493 1.187790 1.179343 1.186521 1.186521 0 258 2021-07-14 1.177440 1.182801 1.177260 1.177537 1.177537 0 259 2021-07-15 1.183334 1.185115 1.180596 1.183334 1.183334 0 260 2021-07-16 1.181307 1.182300 1.179400 1.181181 1.181181 0 Close Adj Close Volume \ 42d 252d 0 NaN NaN 1 NaN NaN 2 NaN NaN 3 NaN NaN 4 NaN NaN .. ... ... 256 1.21 1.2 257 1.20 1.2 258 1.20 1.2 259 1.20 1.2 260 1.20 1.2 [261 rows x 9 columns]>
In [68]:
Out[68]:
<AxesSubplot:>
In [70]:
Out[70]:
0 261 Name: Stance, dtype: int64
In [78]:
Out[78]:
<AxesSubplot:>
In [88]:
Out[88]:
<AxesSubplot:>
In [80]:
Out[80]:
array([<AxesSubplot:>, <AxesSubplot:>] , dtype=object)
In [81]:
Out[81]:
array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)
In [82]:
Out[82]:
array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)
I used ARIMA Model to analyze and forecast the data. I calculated moving
average and logarithimc returns,autocorrealtion function and signal generation.
Better data is the key for the better products. We train you data for Machine Learning and better business analytics. We can annotate, collect, evaluate and translate any type of data in any language.